Package: spsur 1.0.2.1
spsur: Spatial Seemingly Unrelated Regression Models
A collection of functions to test and estimate Seemingly Unrelated Regression (usually called SUR) models, with spatial structure, by maximum likelihood and three-stage least squares. The package estimates the most common spatial specifications, that is, SUR with Spatial Lag of X regressors (called SUR-SLX), SUR with Spatial Lag Model (called SUR-SLM), SUR with Spatial Error Model (called SUR-SEM), SUR with Spatial Durbin Model (called SUR-SDM), SUR with Spatial Durbin Error Model (called SUR-SDEM), SUR with Spatial Autoregressive terms and Spatial Autoregressive Disturbances (called SUR-SARAR), SUR-SARAR with Spatial Lag of X regressors (called SUR-GNM) and SUR with Spatially Independent Model (called SUR-SIM). The methodology of these models can be found in next references: Mur, J., Lopez, F., and Herrera, M. (2010) <doi:10.1080/17421772.2010.516443>; Lopez, F.A., Mur, J., and Angulo, A. (2014) <doi:10.1007/s00168-014-0624-2> and Lopez, F.A., Minguez, R. and Mur, J. (2020) <doi:10.1007/s00168-019-00914-1>.
Authors:
spsur_1.0.2.1.tar.gz
spsur_1.0.2.1.zip(r-4.5)spsur_1.0.2.1.zip(r-4.4)spsur_1.0.2.1.zip(r-4.3)
spsur_1.0.2.1.tgz(r-4.4-any)spsur_1.0.2.1.tgz(r-4.3-any)
spsur_1.0.2.1.tar.gz(r-4.5-noble)spsur_1.0.2.1.tar.gz(r-4.4-noble)
spsur_1.0.2.1.tgz(r-4.4-emscripten)spsur_1.0.2.1.tgz(r-4.3-emscripten)
spsur.pdf |spsur.html✨
spsur/json (API)
# Install 'spsur' in R: |
install.packages('spsur', repos = c('https://rominsal.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/rominsal/spsur/issues
- NCOVR.sf - Homicides in U.S. counties
- Wspc - Spatial weight matrix for South-West Ohio Counties to estimate Spatial Phillips-Curve
- spain.covid - Within/Exit mobility index and incidence COVID-19 at Spain provinces
- spain.covid.sf - Spain geometry
- spc - A classical Spatial Phillips-Curve
Last updated 3 years agofrom:75fc1a8d6f. Checks:OK: 1 NOTE: 4 WARNING: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 23 2024 |
R-4.5-win | NOTE | Nov 23 2024 |
R-4.5-linux | NOTE | Nov 23 2024 |
R-4.4-win | NOTE | Nov 23 2024 |
R-4.4-mac | NOTE | Nov 23 2024 |
R-4.3-win | WARNING | Nov 23 2024 |
R-4.3-mac | WARNING | Nov 23 2024 |
Exports:dgp_spsurimpactspsurlmtestspsurlr_betaslrtestspsurspsur3slsspsurgs3slsspsurmlspsurtimewald_betaswald_deltas
Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDataclassclassIntclicodacodetoolscolorspacecowplotcpp11DBIdeldirDerivdigestdoBydplyre1071evaluatefansifarverfastmapfontawesomeFormulafsgdatagenericsggplot2gluegmodelsgridExtragtablegtoolshighrhtmltoolsisobandjquerylibjsonliteKernSmoothknitrlabelinglatticeLearnBayeslifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmultcompmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigproxypurrrquantregR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackrlangrmarkdowns2sandwichsassscalessfspSparseMsparseMVNspatialregspDataspdepsphetstringistringrsurvivalTH.datatibbletidyrtidyselecttinytexunitsutf8vctrsviridisLitewithrwkxfunyamlzoo
Maximum Likelihood estimation of Spatial Seemingly Unrelated Regression models. A short Monte Carlo exercise with spsur and spse
Rendered frommontecarlo_spsur_spse.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2022-04-22
Started: 2021-04-10
Spatial seemingly unrelated regression models. A comparison of spsur, spse and PySAL
Rendered fromspsur_pysal.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2022-04-22
Started: 2021-04-10
spsur user guide
Rendered fromVignette_User_Guide.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2022-04-22
Started: 2020-04-09
spsur vs spatialreg
Rendered fromspsur-vs-spatialreg.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2022-04-22
Started: 2020-04-09