Package: pspatreg 1.0.4
pspatreg: Spatial and Spatio-Temporal Semiparametric Regression Models with Spatial Lags
Estimation and inference of spatial and spatio-temporal semiparametric models including spatial or spatio-temporal non-parametric trends, parametric and non-parametric covariates and, possibly, a spatial lag for the dependent variable and temporal correlation in the noise. The spatio-temporal trend can be decomposed in ANOVA way including main and interaction functional terms. Use of SAP algorithm to estimate the spatial or spatio-temporal trend and non-parametric covariates. The methodology of these models can be found in next references Basile, R. et al. (2014), <doi:10.1016/j.jedc.2014.06.011>; Rodriguez-Alvarez, M.X. et al. (2015) <doi:10.1007/s11222-014-9464-2> and, particularly referred to the focus of the package, Minguez, R., Basile, R. and Durban, M. (2020) <doi:10.1007/s10260-019-00492-8>.
Authors:
pspatreg_1.0.4.tar.gz
pspatreg_1.0.4.zip(r-4.5)pspatreg_1.0.4.zip(r-4.4)pspatreg_1.0.4.zip(r-4.3)
pspatreg_1.0.4.tgz(r-4.4-any)pspatreg_1.0.4.tgz(r-4.3-any)
pspatreg_1.0.4.tar.gz(r-4.5-noble)pspatreg_1.0.4.tar.gz(r-4.4-noble)
pspatreg_1.0.4.tgz(r-4.4-emscripten)pspatreg_1.0.4.tgz(r-4.3-emscripten)
pspatreg.pdf |pspatreg.html✨
pspatreg/json (API)
# Install 'pspatreg' in R: |
install.packages('pspatreg', repos = c('https://rominsal.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/rominsal/pspatreg/issues
Last updated 2 years agofrom:f57816def6. Checks:OK: 1 ERROR: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 24 2024 |
R-4.5-win | ERROR | Oct 24 2024 |
R-4.5-linux | ERROR | Oct 24 2024 |
R-4.4-win | ERROR | Oct 24 2024 |
R-4.4-mac | ERROR | Oct 24 2024 |
R-4.3-win | ERROR | Oct 24 2024 |
R-4.3-mac | ERROR | Oct 24 2024 |
Exports:fit_termsimpactsnoparimpactsparplot_impactsnoparplot_sp2dplot_sp3dplot_sptimeplot_termspspatfitpsplpspt
Dependencies:AmesHousingbdsmatrixBHbootclassclassIntclicodacodetoolscollapsecolorspaceDBIdeldirdigestdotCall64dplyre1071fansifarverfieldsFormulagenericsggplot2gluegtableisobandKernSmoothlabelinglatticeLearnBayeslifecyclelmtestmagrittrmapsMASSMatrixmaxLikMBAmgcvminqamiscToolsmultcompmunsellmvtnormnlmenumDerivpillarpkgconfigplmproxyR6rbibutilsRColorBrewerRcppRdpackrlangs2sandwichscalessfspspamspatialregspDataspdepstringistringrsurvivalTH.datatibbletidyselectunitsutf8vctrsviridisLitewithrwkzoo
An introduction to pspatreg
Rendered fromA_pspatregPackage.Rmd
usingknitr::rmarkdown
on Oct 24 2024.Last update: 2022-04-08
Started: 2022-03-02
Using pspatreg with cross-sectional data
Rendered fromB_Examples_pspatreg_CS_data.Rmd
usingknitr::rmarkdown
on Oct 24 2024.Last update: 2022-06-07
Started: 2022-03-23
Using pspatreg with spatial panel data
Rendered fromC_Examples_pspatreg_Panel_data.Rmd
usingknitr::rmarkdown
on Oct 24 2024.Last update: 2022-06-07
Started: 2022-04-06